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ABSTRACT: The N-acetylN-(2-fluorenyl)nitrenium ion Za) reacts very efficiently with monomeric -2
deoxyguanosine (d-G) to form a C-8 addudt(2'-deoxyguanosin-8-yl)-2-acetylaminofluorer@, (in an aqueous
environment, with a selectivity ratit.c/ks, of 13.1x 10° M~* at °C and 4.8x 10°* M~ at 30°C. The reactivity of

the self-complementary oligomer d-ATGCAT wifla can be separated into components due to the single-stranded
(SS) and double-stranded (DS) forms. Within the error limits of the measurekgfitsc ~ 0.27 andkpg/ky.c = O.
Another measure of the reactivity of d-G moieties in the DNA double helix can be obtained from measurements with
the circular super-coiled plasmid pUC189. This plasmid provides an upper link§§ier dkq.c of 0.02, wherekyciois

the average trapping rate constant per d-G moiety in pUC19. The strong inhibition of the trapping reaction caused by
the tertiary structure of the DNA double helix may be responsible for the change in product distribu®iarde®
adducts found from reaction with d-G, and denatured DNA (exclusive C-8 adgjuatd native DNA [5-20% N-2
adduct,3-(2deoxyguanosimN-yl)-2-acetylaminofluorene?]. 0 1998 John Wiley & Sons, Ltd.
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INTRODUCTION promotes or inhibits the formation of the d-G-—nitrenium
ion adducts.

The ‘azide clock’ method has been used to characterize We have compared the selectivity of reactions of the

the lifetimes and relative reactivities of carbocations in N-acetylN-(2-fluorenyl)nitrenium ion, Za) with mono-

nucleophilic solvents for over 25 yedrsand was first  meric d-G, the self-complementary hexamer d-ATGCAT

used to characterize the lifetime of a nitrenium ion about and the circular super-coiled plasmid pUC19. Our results

10 years ag@. Using this method, we have recently show that single-stranded DNA retains significant

shown that certain carcinogenic esteredirylhydroxyl- reactivity toward2a (ca 27% of that of d-G), but that

amines andN-arylhydroxamic acids1) decompose in  double-stranded DNA has negligible reactivity toward

aqueous solution into nitrenium iong)(that react very  this nitrenium ion. The implications of these results with

selectively with N> These ions also react efficiently respect to carcinogenesis are discussed.

with 2'-deoxyguanosine (d-G)Direct measurements of

the aqueous solution lifetimes @ba—c confirm that the

ions have lifetimes in the range 0.1-41§, and that they

rea%t with Ny~ with rate constants ota 5 x 10°m~* \f \g(+

—16,7

s ox P
Although it is known thaRa—creact efficiently with d- Ar Ar

G, and the C-8 adducts generated from reaction with 1 2

monomeric d-G are equivalent to the major adducts

isolated fromin vivo and in vitro experiments with

DNA,>8° the effect of DNA structure on the adduct-

forming reaction is unknown. In particular, it is not a Ar=2fluorenyl Y=Ac X =SO0g3
known if the tertiary structure of the DNA double helix
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RESULTS AND DISCUSSION

The carcinogenicesterla decomposesia rate-limiting
heterolyticN—O bond cleavageinto the nitrenium ion
23, thatis efficiently trappedby N;— andd-G (Scheme
1).37° The rate constantratios k,/ks and ky.o/ks can be
determinedby measuremenf the productyields of the
majorhydrolysisproduct3 andtheazideadduct4 and5,
or thed-G adduct,6, asa functionof [N5~] or [d-G].3*°
In particular,the fractionalyield of hydrolysisproducts,
fs, is given by

ks
R v

whereX canbe N3~, d-G or any othernucleophilethat

reactsirreversiblywith 2a. The inverseof equation(1):
1 K«

providesa convenientmeansto evaluatek,/ks by linear

regressiormethods.

Figure 1 shows 1/f5 as a function of [N3™] for the
hydrolysisof 1ain 1 mm Na,HPO,—NaH,PO, buffer [pH
7.5,1=0.5 (NaClQy)] at 0 and 30°C. Values of Kk,/ks
measuredht threetemperaturegor X =N3~ andd-G are
givenin Tablel andin(k,/ky) is plottedvs 1/T in Figure2.
The slopesof the linear correlationlinesin Figure2 are
(AHs" — AH,M)/R. The lines are parallel within experi-
mentalerror with AHs" — AH,," = 5.4+ 1.0 kcal mol™*
and AHg — AHgq.g"=5.2+1.2 kcal mol™* (1kcal=

0 1998JohnWiley & Sons,Ltd.

4.184KkJ). Since AH.,' ~ AHg4.c', the most significant
differencein thesetwo trappingreactionsis dueto AS".
From the interceptsof the plots, AS;cf — AS,, =-3.8
eu.

Thetrappingof 2a by N3~ occursat, or very near,the
diffusionlimit. Directly measured,, for 2ageneratedby
laserflash photolysisat 20°C undertheseconditionsis
4.2x 10°m 1 s1° Themeasuredraluesof k,, at 20°C
for severalnitrenium ions, including 2a, with lifetimes
(1k9) of 0.2-30us are in the range 4.0x 10°—
5.0x 10° Mt s71.87 This is very similar to diffusion-
limited second-orderateconstantgor trappingof carbo-
cationsby N3~ and other small, strong nucleophiles™?

0.00 0.10 0.20 0.30 0.40 0.50
[N;1 (mM)

Figure 1. Plot of 1/f vs [N37] for 1a at 0 and 30°C.
Regression lines were determined from a weighted least-
squares fit
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Table 1. Measured values of k/k at different temperatures

Kelks (M~ %)?
Temperaturg°C) X =N;3P X=d-G X =d-ATGCAT
0 (14.0+ 1.0) x 10* (13.1+ 1.0) x 10° (7.5+0.4) x 10?
20 (6.2+0.4)x 10* ¢ (8.0+0.6)x 10° ¢
30 (5.4+ 0.4)x 10° (4.8+0.4)x 10° (12.5+ 1.0) x 107

& Conditions:1 mvM Na,HPO,—NaH,PO, aqueousbuffer, pH 7.5, = 0.5 (NaClQy), unlessindicatedotherwise.

b Solventwas5 vol.% CHzCN-H,O.
°Ref.1
4 Ref. 3.

Competitionexperimentshowthatthe diffusion-limited
rate constantor reactionof purine nucleosideswith the
nitreniumions 2b and2c at 20°C undertheseconditions
is ca 2.0x 10°mM~* s712 Since ks for 2a has been
measuredas 7.7 x 10* s~ undertheseconditions® ky.
for 2aat20°Cis ca6.2x 10°m~* s7*. This is within a
factor of threeof the apparentiffusion limit. Sinceboth
kaz and ky.g are so close to their respectivediffusion-
controlled limits, it is not surprising that the major
differencesin theserate constantsippearn AS'.

The rate constantratios for trapping of 2a by the
oligomerd-ATGCAT weredeterminedy monitoringthe
changen concentratiorof the hydrolysisproduct3 asa
functionof [d-ATGCAT]. Figure3 showsaplot of 1/fsas
a function of [d-ATGCAT] at 0 and 30°C. The derived
valuesof Ky.atecat/ks are givenin Table 1 and In(ky.
atccat/Ks) is plottedin Figure 2. The trapping product
wasnot characterizedn this case putit hasbeenshown
previouslythat short DNA oligomersreactwith 1a and
other estersof N-arylhydroxamicacids and N-arylhy-
droxylaminesto generatethe C-8 guanosineadduct
analogoudo 6 asthe major observedoroduct?

In theabsencef oligomerthehydrolysisrateconstant,
ko, for 1ais 0.010+ 0.002s * at 0°C. In the presencef
0.9mm d-ATGCAT the rate constantis unchangedat
0.010+ 0.001s . Under theseconditionsthe yield of
the hydrolysis product, 3, is reducedby 40% from its

In(k./K.)

0.30 0.32 0.34 0.36 0.38 0.40
(E-2)
1T (K7)

Figure 2. Plot of In (k/ks) vs 1/T. X = (@) N3~, (O) d-G and
(A) d-ATGCAT. Regression lines were determined from an
unweighted least-squares fit

0 1998JohnWiley & Sons,Ltd.

yield in the absenceof the oligomer. Theseresultsare
similar to thosereportedpreviouslyfor the hydrolysisof
la andsimilar estersin the presencef N3~ andd-G2°
andare consistentwith trappingof the nitreniumion 2a
after rate-limiting N—O bondheterolysis.

The temperature dependenceof kyatccat/ks is
different from that observedor N3~ andd-G. For both
of these nucleophilesk,/ks decreaseswith increasing
temperature but the oppositeis true for kyatccat/ks
(Figure 2). A melting curve for d-ATGCAT (Figure 4)
showsthat in this temperaturerange the self-comple-
mentaryoligomer changesdrom predominantlydouble-
strandedat 0°C (72% double-strandedp predominantly
single-strandedat 30°C (5% double-stranded)These
estimatesveremadein the standardashionasindicated
in Figure 4. We concludethat the temperaturedepen-
denceof ky.atccat/ks is causedby the melting of the
oligomerdimer overthis temperaturgange,andthatthe
single-strandedform of the oligomer is much more
reactive toward the nitrenium ion than is the double-
strandedorm.

A quantitativeestimateof the relative reactivities of
the double- and single-strandedorms of the oligomer
toward 2a canbe obtainedasfollows. If x andy arethe
relativereactivitiesof thed-G residuesn the double-and
single-strandedforms, respectively, compared with
monomericd-G, we canwrite the equation

_ kg - aTcCAT/Ks
Es)+ (ssy == ATECH )

whereDS and SSarethe fraction of the oligomerin the
double- and single-strandedforms, respectively,at a
giventemperatur@sdeterminedrom the meltingcurve.
The rate constantratios ky.atccat/ks and ky.o/ks are
measuredit the sametemperatureas DS and SS. If we
assumehatx andy aretemperaturéndependenoverthe
narrowtemperatureangeemployedhere,we cansolve
simultaneougquationgo obtainx andy. Theassumption
thatx andy aretemperaturéendependenis equivalentto
assuminghattherateconstantgor trappingof 2a by the
double-andsingle-strandetbrms, ks andksg varywith
temperaturein the sameway that ky.¢g does. This is
probablynot true over a large temperatureange,but if
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Figure 3. Plot of 1/f; vs [d-ATGCAT] for 1a at 0 and 30°C.
Regression lines were determined from a weighted least-
squares fit

thedataaretakenovera fairly narrowtemperatureange
this assumptiorwill notleadto majorerrors.The values
of x andy calculatedfrom our dataare —0.02~ 0 and
0.27, respectively. Within the error limits of our
experimentve concludethatkps &~ 0 andkss=0.27Ky._g.
Thedouble-strandedligomerhasvery little reactivity
towardthenitreniumion, buttheactuallevel of reactivity
is difficult to determinewith precisionbecauseof the
presence®f themuchmorereactivesingle-strandefbrm.
The selectivity of the double-strandedsuper-coiled
plasmid pUC19 provides another estimate of the
reactivity of d-G residueswithin double-strande®NA.
At 0°C in the presencef sufficientpUC19to producea
solution 0.66mmM in d-G residues,the yield of the
hydrolysisproduct3 is reducedby 14.7+ 0.5%,while kg
remainsconstanttca0.010s . Thisresultcorresponds
to avalueof Kyycidks of 260+ 10M ™, wherek,ucioiS
thetrappingrateconstanperd-G moietyin pUC19.This
isanupperlimit since2acanreactwith thesmallamount
of nicked DNA presentin the sampleandcanalsobind
non-specifically to the phosphate backbone of the
DNA.* Sincethe reactivity of nitreniumions with the
monomericpurineandpyrimidine based-A, d-C andd-
T is negligible, these probably do not contribute

0.60

0.40 ...
a T o’
< o® DS = a/(a+b)
4 0.20 ...
¢ p

0.00

.0.20 L L L L L n n L
-30 -20 -10 0 10 20 30 40 50 60 70

T (°C)

Figure 4. Melting curve for d-ATGCAT at pH 7.5 (5 mm
Na,HPO,—NaH,PO, buffer), un=0.5 (NaClO,4). Absorbance
measurements were made at 260 nm
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TABLE 2. Relative reactivities of pUC19, d-ATGCAT and d-G
toward the nitrenium ion 2a at 0°C

Trappingat 0.10mm

K. /Ky in d-G residueq%) @
d-G 1 57+3
d-ATGCAT® 0.27 26+ 3
(d-ATGCAT),® ~0 ~0
puUC19 <0.02 <2.6+0.2

ke/ks[X](100%

a Calculatedfrom % trapping=
PG ke /kelX]

® The single-strandedorm.
¢ The double-strandedbrm.

significantly to the measuredreactivity® This result
showsthat d-G residuesin double-strandedNA trap
nitrenium ions very inefficiently, on average.The d-G
residueswithin pUC19 do not have identical environ-
mentsandthey may showa rangeof reactivitiestoward
2a,butit is clearfrom our datathatmostd-G moietiesin
pUC19showvery little reactivity toward2a.

Table2 summarizeshereactivitiesof d-G moietiesin
variousenvironmentsyith the nitreniumion 2a at 0°C.
Monomeric d-G is most reactive. It traps 2a very
efficiently (>50% trapping)at [d-G] aslow as0.1mm.
Thereactivity of d-G residuesn single-strande®NA is
reducedbputis still substantialThetrappingefficiencyat
0.1mMm in d-Gresiduess abouthalf of thatof monomeric
d-G. The d-G residuesin double-strandeddNA show
negligiblereactivity toward2awith amaximumtrapping
efficiencyat 0.10mm in d-G residuesof about2.5%.

Theseresultsshow that the tertiary structureof the
DNA doublehelix significantlyinhibits the formation of
the C-8 adduct. The magnitude of this inhibition is
surprisingbecausdahe C-8 adductis apparentlyformed
by rearrangemendf aninitially formedN-7 adduct,and
N-7 of d-G is accessiblén the majorgrooveof the DNA
doublehelix 22 Thelargebulk of 2a may play arolein
limiting the accessibilityof N-7 to this nitrenium ion.
Thisinhibition of theformationof the C-8 adductmaybe
the reasonthat treatmentof native DNA with 1a or its
precursorsleadsto the formation of a minor (5-20%
comparedwith the C-8 adduct)N-2 adduct,7.°**3This
adductis not detectedin studieswith d-G or denatured
DNA.5>°%14|t appearghatthis adductis only detectedf
the formation of the more abundantC-8 adduct is
inhibited. This hasimportantimplicationswith respecto
carcinogenesibecausehe N-2 adductis moreresistant
than the more abundantC-8 adductto excision and
repair®*3Ironically, theresistancef the doublehelix to
formation of the C-8 adduct may make it more
susceptibleto the formation of the potentially more
dangerousd\-2 adduct.

Our datashow that, in vivo, duplex DNA should be
fairly resistanto attackby 2a. Only in cells undergoing
DNA replicationor transcriptionis is likely thatefficient
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reaction with 2a can occur. It is a well known
phenomenorthat actively growing cells, suchas tumor
cells and stem cells in their mitotic phase,are more
susceptibleto anti-cancerdrugs that attack DNA.® It
appearsthat the same generalizationholds true for
susceptibilityto nitreniumion-basedcarcinogens.

EXPERIMENTAL

The synthesisof 1a has been describedpreviously*®
Purification of solvents and preparation of buffer
solutionshave beendescribed NaN; and d-G were
obtained commercially and were used without further
purification. The DNA hexamerd-ATGCAT was pur-
chasedfrom National BiosciencesIn all casesthe pH
wasmaintainedat 7.5 with low concentration1-5mm)
Na,HPO,—NaH,PO, (9:1) buffer. Theionic strengthwas
maintainedat 0.5 with NaClQ,.

pUC19 was preparedby a generalproceduré-’ The
DH5 E.coli strainthat expressepUC19wasamplified
in arich medium(5 gl~* yeastextract,10 gl * tryptone,
10gl~* NaCl, pH 7.5, autoclavedor 30 min) containing
ampicillin and chloramphenicol.The cells were har-
vestedand lysed with sodium dodecyl sulfate. pUC19
was purified by equilibrium centrifugationin CsCl—
ethidium bromide gradients.Concentrationsvere mon-
itored by UV methodsand purity was determinedby a
densitometricscanof animageof a UV illumination of
an ethidium bromide-stainedgel. The purity was
determinedo be 98%.

Product studies. The hydrolysis product 3, the azide
adducts4 and5 andthe C-8 adductformedwith d-G, 6,
have been characterized previously>#* Authentic
sampleof all compoundsvereavailable.Productyields
weredeterminedy HPLC methodswith UV detectionat
2780r 280nm.

All productyieldsweredetermineddy 20 ul injections
on to a C-8 Ultrasphereoctyl column usinga MeOH-
H,O eluent (6:4 or 6.5:3.5) buffered with 0.050M
NaOAc—HOAc(1:1) at a flow rateof 1 mimin.™*

Productstudieswereinitiated by a 15l injection of a
2.0mm stock solutionof 1ain DMF into 3.0ml of the
agueoussolution containingNaNs, d-G, d-ATGCAT or
pUC19 to produce an initial concentrationof la of

0 1998JohnWiley & Sons,Ltd.

1.0x 10°M. The concentrationsof Ns, d-G and d-
ATGCAT were kept in the range0.1-1.0mm. pUC19
was usedat a concentrationthat resultedin a 0.66mm
concentratiorof d-GresiduesAll reactionmixtureswere
incubatedat 0, 20 or 30°C.

A melting curve for d-ATGCAT was obtained by
monitoringthe UV absorbancat260nm for asolutionof
theoligomerin thetemperaturgange—12to 70°C under
solvent conditions identical with those used in the
productstudies.At temperature®elow about—5°C the
solutionis super-cooledndwill freezespontaneouslif
disturbed. UV measurementan be made on this
solution if careis takento minimize dust particlesin
the solutionandany shockto the solution.

Kinetics. Kinetic measurements NaN; and d-G solu-

tions havebeendescribed ™ The rate of decomposition
of 1ain 0.9mm d-ATGCAT at 0°C was monitoredby

UV methodsat 300nm. The concentrationgnd solvent
conditionswereidenticalwith thoseusedin the product
studies.
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